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ABSTRACT: Cyclic TBS-protected iodohydrins (and bromohydrins)
undergo a highly diastereoselective cross-coupling with various aryl-
and heteroarylmagnesium reagents in the presence of THF-soluble
CoCl2·2LiCl and TMEDA as a ligand leading to trans-2-arylcyclohex-
anol derivatives in good yields and dr up to >99:1. A range of
functional groups are tolerated in the Grignard reagent (e.g., COOR,
CN, CF3, SF5). The use of heterocyclic iodohydrins leads to trans-3,4-
disubstituted pyrrolidines and tetrahydrofurans.

Transition-metal-catalyzed cross-coupling reactions are
indispensable tools for the construction of C−C bonds

in organic synthesis.1 Most of these reactions are catalyzed by
Pd or Ni salts; however, these metals have the disadvantage of
toxicity2 and/or high costs.3 In contrast, cobalt is an
inexpensive and less toxic alternative for cross-coupling
reactions. Recently, there has been much progress in Co-
catalyzed coupling methods.4 However, despite the spectacular
advances and insights into the role of Co in coupling reactions,
only a few diastereoselective Co-mediated or catalyzed
transformations of this type have been described.5,6 Previously,
we have reported a diastereoselective Fe-mediated cross-
coupling of cyclic iodohydrins with aryl Grignard reagents
leading to products of type 1.7 Although very effective with
electron-poor Grignard reagents, this method displays a limited
reaction scope, and electron-rich arylmagnesium bromides give
unsatisfactory results. Additionally, cyclic bromohydrins did not
react. Herein, we report a new broadly applicable cobalt-
mediated α-arylation of TBS-protected (TBS = tert-butyldime-
thylsilyl) cyclic bromo- and iodohydrins.8 The structural unit
present in 1 is found in a range of biologically active molecules,
such as the NK1 antagonists 2 and 3 (Scheme 1).9

In optimization studies, we have examined the arylation of 4a
(75:25 cis/trans, X = I) with 4-anisylmagnesium bromide (5a)
in the presence of various transition-metal salts (Table 1). As
mentioned above, the use of FeCl2·2LiCl proved to be
unsatisfactory, and the coupling of 4a with 5a furnished the
expected product 1a in only 18% yield (entry 1).7 Changing the
iron salt or the ligand was not satisfactory (entries 2 and 3).10

Therefore, we examined other metallic salts. MnCl2·2LiCl
11

and CrCl2
12 gave poor results (entries 4 and 5), in contrast to

cobalt salts. Thus, CoCl2·2LiCl (0.85 equiv)13 and 4-
fluorostyrene (0.5 equiv) used as an additive14 led to the
product 1a with a dr = 99:1, but with only 44% yield (entry 6).
In the absence of 4-fluorostyrene, the yield improved to 62%.
Finally, adding TMEDA as a ligand gave the best results (71%
isolated yield, dr 95:5; entry 8).5e,15

Thus, the dropwise addition of various Grignard reagents to
a mixture of the protected iodohydrin 4a (1.0 equiv), CoCl2·
2LiCl (0.85 equiv, 1 M in THF),16 and TMEDA (0.3 equiv) in
THF at −50 °C led to the trans-coupling products (1a−k) in
55−91% yield and excellent dr (dr >95:5, Table 2).17 Both
electron-poor or electron-rich arylmagnesium halides were used
successfully. Furthermore, heterocyclic Grignard reagents
obtained either by a directed magnesiation18 or magnesium
insertion19 led to the desired cross-coupling product in very
high diastereoselectivity (up to >99:1 dr). Thus, the
magnesiation of the uracil derivative 6 with TMPMgCl·LiCl
(1.1 equiv, THF, 0 °C, 0.5 h) led to the heterocyclic Grignard
reagent 5b (>90% yield).18 Its coupling with 4a under the
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Scheme 1. (a) Diastereoselective α-Arylation of Alcohol
Derivatives and (b) Structure of Key NK1 Antagonists 2 and
3
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standard conditions furnished the pyrimidine 1b in 55% yield
(dr >99:1). Also, N-methyl 5-bromoindole 7 reacted with Mg
and LiCl (25 °C, 1 h) to produce the corresponding Grignard
reagent 5c in >90% yield.17 Coupling with 4a under our
standard conditions produced the indole 1c (60% yield, dr
98:2, Scheme 2).
Extension of this coupling to the five-membered iodohydrin

4b (X = I) led to the expected α-arylated or α-heteroarylated
cyclopentanol silyl ethers 8a−j in 52−80% yield (dr >97:3;
Table 3). The mild conditions required for this cross-coupling
allowed the presence of sensitive functional groups in the
Grignard reagent. Thus, the treatment of the bromobenzonitrile

(9) with iPrMgCl·LiCl (1.1 equiv, THF, −20 °C, 0.5 h)20

provides the corresponding Grignard reagent 5d (>90%),
which smoothly undergoes a Co-mediated cross-coupling,
providing the cyclopentanol derivative 8a in 67% yield (dr
>99:1). Similarly, the arylmagnesium reagent 5e (>90%)
prepared from the iodobenzoate 10 by I/Mg-exchange
furnished, after cross-coupling with 4b, the cyclopentanol
derivative 8b in 52% yield (dr 97:3, Scheme 3).
The use of CoCl2·2LiCl allows further expansion of the

reaction scope of this coupling, and the iodohydrins 4a,b can be
replaced advantageously by the corresponding bromohydrin
(4c, X = Br). Using the same reaction conditions, the cross-
coupling products 11a−d were obtained with high diaster-
eoselectivities (dr >97:3, Scheme 4).
Remarkably, this cross-coupling can also be performed with

heterocyclic iodohydrins such as 12 and 13, leading to trans-
3,4-disubstituted tetrahydrofurans (14) and pyrrolidines (15)
as single diastereomers (71−74%, Scheme 5). The up-scaling of
this cross-coupling is readily performed as indicated in Table 3
(entry 7) as well as in the synthesis of 14, which has been
performed on a 4 mmol scale (gram scale).
To demonstrate the synthetic potential of this method, we

have prepared the functionalized arylated TBS-protected
cyclohexanol,16 which is a key intermediate for the synthesis
of the NK1 antagonist 2. Thus, the commercially available
ketone 17 was converted in four steps (37% overall yield) into
the silyl-protected iodohydrin 18 (Scheme 6). Co-mediated
cross-coupling with 4-fluorophenylmagnesium bromide (5f)

Table 1. Optimization of the Conditions for the Diastereoselective Cross-Coupling of 4a with 5a

entry metal mediator (equiv) additive (equiv) GC yielda (%) dra

1 FeCl2·2LiCl (0.85) 4-fluorostyrene (0.50) 18 94:6
2 FeCl2·2LiCl (0.85) TMEDA (0.30) 53 88:12
3 Fe(acac)3 (0.85) TMEDA (0.30) 24 91:9
4 MnCl2·2LiCl (0.85) TMEDA (0.30) 0 nd
5 CrCl2 (0.20) TMEDA (0.30) 5 99:1
6 CoCl2·2LiCl (0.85) 4-fluorostyrene (0.50) 44 99:1
7 CoCl2·2LiCl (0.85) 62 99:1
8 CoCl2·2LiCl (0.85) TMEDA (0.30) 79 (71)b 95:5

aDetermined by capillary GC analysis. Undecane (C11H24) was used as internal standard. bIsolated yield. TMEDA = N,N,N′,N′-tetramethylethane-
1,2-diamine.

Table 2. Products Obtained by the Diastereoselective Cross-
Coupling of 4a with Various Grignard Reagents

aIsolated yield. bDetermined by capillary GC and 1H NMR analysis.

Scheme 2. Preparation of Heterocyclic Grignard Reagents
and Their Diastereoselective Cross-Coupling with 4a

Organic Letters Letter

dx.doi.org/10.1021/ol503361m | Org. Lett. 2014, 16, 6500−65036501



furnished the desired product 16 in 61% yield (dr 85:15).
Although this diastereoselectivity is not perfect, it represents an

improvement over the previously reported synthesis (dr
66:54).9

Preliminary mechanistic studies have shown that ArMgX and
CoCl2 readily react with each other, leading to the
homocoupling products quantitatively. However, under the
reaction conditions (slow addition of ArMgX to a mixture of
the respective halohydrin, CoCl2·2LiCl, and TMEDA), the
desired cross-coupling is much faster. The stereoconvergence of
the reaction may be the result of a radical generated at the α-
position to oxygen.4b,5

In conclusion, we have reported a highly stereoselective
cobalt-mediated arylation of TBS-protected cyclic bromo- and
iodohydrins, leading to trans-α-arylated cyclic alcohols with
high diastereoselectivity (up to dr >99:1). In contrast to the
corresponding iron-mediated arylation, both electron-with-
drawing and electron-donating substituents can be present in
the Grignard reagent. Furthermore, heterocyclic iodohydrins
are also excellent substrates for this cobalt-mediated arylation.
Further extension of this method as well as mechanistic studies
are currently underway.
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Table 3. Products Obtained by the Diastereoselective Cross-
Coupling of 4b with Various Grignard Reagents

aIsolated yield. bDetermined by capillary GC and 1H NMR analysis.
cReaction performed on a 4 mmol scale.

Scheme 3. Preparation of Various Grignard Reagents and
Their Diastereoselective Cross-Coupling with 4b

Scheme 4. Products of Type 11 Obtained by the
Diastereoselective Cross-Coupling of Bromohydrin 4c with
Arylmagnesium Reagents

Scheme 5. Diastereoselective Cross-Coupling of the
Heterocyclic Halohydrins 12 and 13

Scheme 6. Synthesis of Key Intermediate 16 from Ketone 17
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